skip to main content


Search for: All records

Creators/Authors contains: "Spanopoulos, Ioannis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    2D hybrid organic–inorganic perovskites (HOIPs) are commonly found under subcritical cyclic stresses and suffer from fatigue issues during device operation. However, their fatigue properties remain unknown. Here, the fatigue behavior of (C4H9‐NH3)2(CH3NH3)2Pb3I10, the archetype 2D HOIP, is systematically investigated by atomic force microscopy (AFM). It is found that 2D HOIPs are much more fatigue resilient than polymers and can survive over 1 billion cycles. 2D HOIPs tend to exhibit brittle failure at high mean stress levels, but behave as ductile materials at low mean stress levels. These results suggest the presence of a plastic deformation mechanism in these ionic 2D HOIPs at low mean stress levels, which may contribute to the long fatigue lifetime, but is inhibited at higher mean stresses. The stiffness and strength of 2D HOIPs are gradually weakened under subcritical loading, potentially as a result of stress‐induced defect nucleation and accumulation. The cyclic loading component can further accelerate this process. The fatigue lifetime of 2D HOIPs can be extended by reducing the mean stress, stress amplitude, or increasing the thickness. These results can provide indispensable insights into designing and engineering 2D HOIPs and other hybrid organic–inorganic materials for long‐term mechanical durability.

     
    more » « less
  2. null (Ed.)
  3. The sorption properties of [Zr 6 O 4 (OH) 4 (NH 3 + -BDC) 6 ]Cl 6 · x H 2 O ( MOR-1 ) and H 16 [Zr 6 O 16 (H 2 PATP) 4 ]Cl 8 · x H 2 O ( MOR-2 ) towards ReO 4 − and TcO 4 − were studied in detail. Both MOR-1 and MOR-2 are very effective sorbents for ReO 4 − and TcO 4 − anions, with MOR-2 showing the highest sorption capacity (up to 4.1 ± 0.4 mmol g −1 ) among the known metal organic materials. Importantly, the exceptional sorption capacity of MOR-2 is retained even under conditions simulating acidic nuclear waste. In addition, MOR-1 and MOR-2 exhibit selective luminescence ReO 4 − sensing properties, demonstrated for the first time for MOF materials. 
    more » « less
  4. Abstract

    Hybrid halide 2D perovskites deserve special attention because they exhibit superior environmental stability compared with their 3D analogs. The closer interlayer distance discovered in 2D Dion–Jacobson (DJ) type of halide perovskites relative to 2D Ruddlesden–Popper (RP) perovskites implies better carrier charge transport and superior performance in solar cells. Here, the structure and properties of 2D DJ perovskites employing 3‐(aminomethyl)piperidinium (3AMP2+) as the spacing cation and a mixture of methylammonium (MA+) and formamidinium (FA+) cations in the perovskite cages are presented. Using single‐crystal X‐ray crystallography, it is found that the mixed‐cation (3AMP)(MA0.75FA0.25)3Pb4I13perovskite has a narrower bandgap, less distorted inorganic framework, and larger PbIPb angles than the single‐cation (3AMP)(MA)3Pb4I13. Furthermore, the (3AMP)(MA0.75FA0.25)3Pb4I13films made by a solvent‐engineering method with a small amount of hydriodic acid have a much better film morphology and crystalline quality and more preferred perpendicular orientation. As a result, the (3AMP)(MA0.75FA0.25)3Pb4I13‐based solar cells exhibit a champion power conversion efficiency of 12.04% with a high fill factor of 81.04% and a 50% average efficiency improvement compared to the pristine (3AMP)(MA)3Pb4I13cells. Most importantly, the 2D DJ 3AMP‐based perovskite films and devices show better air and light stability than the 2D RP butylammonium‐based perovskites and their 3D analogs.

     
    more » « less
  5. Abstract

    The Ag and In co‐doped PbTe, AgnPb100InnTe100+2n(LIST), exhibitsn‐type behavior and features unique inherent electronic levels that induce self‐tuning carrier density. Results show that In is amphoteric in the LIST, forming both In3+and In1+centers. Through unique interplay of valence fluctuations in the In centers and conduction band filling, the electron carrier density can be increased from ≈3.1 × 1018cm−3at 323 K to ≈2.4 × 1019cm−3at 820 K, leading to large power factors peaking at ≈16.0 µWcm−1K−2at 873 K. The lone pair of electrons from In+can be thermally continuously promoted into the conduction band forming In3+, consistent with the amphoteric character of In. Moreover, with rising temperature, the Fermi level shifts into the conduction band, which enlarges the optical band gap based on the Moss–Burstein effect, and reduces bipolar diffusion and thermal conductivity. Adding extra Ag in LIST improves the electrical transport properties and meanwhile lowers the lattice thermal conductivity to ≈0.40 Wm−1K−1. The addition of Ag creates spindle‐shaped Ag2Te nanoprecipitates and atomic‐scale interstitials that scatter a broader set of phonons. As a result, a maximumZTvalue ≈1.5 at 873 K is achieved in Ag6Pb100InTe102(LIST).

     
    more » « less
  6. Abstract

    Developing efficient interfacial hole transporting materials (HTMs) is crucial for achieving high‐performance Pb‐free Sn‐based halide perovskite solar cells (PSCs). Here, a new series of benzodithiophene (BDT)‐based organic small molecules containing tetra‐ and di‐triphenyl amine donors prepared via a straightforward and scalable synthetic route is reported. The thermal, optical, and electrochemical properties of two BDT‐based molecules are shown to be structurally and energetically suitable to serve as HTMs for Sn‐based PSCs. It is reported here that ethylenediammonium/formamidinium tin iodide solar cells using BDT‐based HTMs deliver a champion power conversion efficiency up to 7.59%, outperforming analogous reference solar cells using traditional and expensive HTMs. Thus, these BDT‐based molecules are promising candidates as HTMs for the fabrication of high‐performance Sn‐based PSCs.

     
    more » « less